DOI: 10.1101/479287Nov 27, 2018Paper

Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data

BioRxiv : the Preprint Server for Biology
Emily F Davis-MarcisakElana J Fertig

Abstract

Tumor heterogeneity provides a complex challenge to cancer treatment and is a critical component of therapeutic response, disease recurrence, and patient survival. Single-cell RNA-sequencing (scRNA-seq) technologies reveal the prevalence of intra- and inter-tumor heterogeneity. Computational techniques are essential to quantify the differences in variation of these profiles between distinct cell types, tumor subtypes, and patients to fully characterize intra- and inter-tumor molecular heterogeneity. We devised a new algorithm, Expression Variation Analysis in Single Cells (EVAsc), to perform multivariate statistical analyses of differential variation of expression in gene sets for scRNA-seq. EVAsc has high sensitivity and specificity to detect pathways with true differential heterogeneity in simulated data. We then apply EVAsc to several public domain scRNA-seq tumor datasets to quantify the landscape of tumor heterogeneity in several key applications in cancer genomics, i.e. immunogenicity, cancer subtypes, and metastasis. Immune pathway heterogeneity in hematopoietic cell populations in breast tumors corresponded to the amount diversity present in the T-cell repertoire of each individual. In head and neck squamous cell carcin...Continue Reading

Related Concepts

Malignant Neoplasms
Fibroblasts
Genes
Head
Neoplasm Metastasis
Neoplasms
T-Lymphocyte
Subtype (Attribute)
Response to Treatment
Basal Cell

Related Feeds

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Genomics (Keystone)

Cancer genomics approaches employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research using such technologies in this feed.