Mar 25, 2020

The functional landscape of patient derived RNF43 mutations predicts Wnt inhibitor sensitivity

BioRxiv : the Preprint Server for Biology


A subset of Wnt-addicted cancers are sensitive to targeted therapies that block Wnt secretion or receptor engagement. RNF43 loss-of-function mutations that increase cell surface Wnt receptor abundance cause sensitivity to Wnt inhibitors. However, it is not clear which of the clinically identified RNF43 mutations affect its function in vivo. We assayed 90 missense and 45 truncating RNF43 mutations found in human cancers, using a combination of cell-based reporter assays, genome editing, flow cytometry and immunofluorescence microscopy. Patent-derived xenograft (PDX) models with C-terminal truncating RNF43 mutations were tested for Wnt inhibitor sensitivity. We find that five common germline variants of RNF43 have wild-type activity. The majority of cancer-associated missense mutations in the RING and PA domains are either loss of function or hyperactivating. Hyperactivating mutants appear to function through formation of inactive dimers with endogenous RNF43 and/or ZNRF3. C-terminal truncation mutants including the common G659fs mutant, have discordant behavior in in vitro versus in vivo assays. PDXs and cell lines with C-terminal truncations show increased cell surface FZD, Wnt/{beta}-catenin signaling and are responsive to POR...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Spatial Distribution
Monitoring - Action
Sodium Channel Protein Type 1 Subunit Alpha
Biochemical Turnover

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.