Jul 19, 2008

Facial clefting in Tp63 deficient mice results from altered Bmp4, Fgf8 and Shh signaling

Developmental Biology
Helen A ThomasonJill Dixon


During embryogenesis, the transcription factor Tp63 is expressed in the basal cells of multiple epithelial tissues. In humans, mutations in TP63 have been identified in five distinct human developmental disorders that are characterized by limb abnormalities, ectodermal dysplasia, and facial anomalies. To dissect the molecular pathogenesis of the bilateral cleft lip and cleft palate that results from mutation of Tp63, we analysed Tp63 mutant mice. At E10.5, Tp63-deficient mice exhibited abnormal morphogenesis of the medial nasal, lateral nasal and maxillary processes. Analysis of key signaling molecules revealed that these defects result from increased Bmp4 signaling in the epithelia of the facial processes. Acting antagonistically on Fgf8 and Shh, this aberrant signaling led to a reduction in mesenchymal cell proliferation and increased cell death in specific regions of the facial processes. In addition, a proliferative defect in the mesenchyme of the maxillary processes at E11.5 resulted in absence of the anterior region of the palatal shelves and, subsequently, cleft palate. Our results are consistent with a role for Tp63 in the regulation of Bmp signaling controlling the growth, modelling and fusion events underlying facial ...Continue Reading

  • References43
  • Citations45


  • References43
  • Citations45


Mentioned in this Paper

Infantile Scurvy
Hedgehog Proteins
Pathogenic Aspects
Entire Oral Cavity
Biochemical Pathway
PAX9 gene
Structure of Maxillary Process of Embryo
Abnormal Degeneration

Related Feeds

Birth Defects

Birth defects encompass structural and functional alterations that occur during embryonic or fetal development and are present since birth. The cause may be genetic, environmental or unknown and can result in physical and/or mental impairment. Here is the latest research on birth defects.


Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Alternative splicing

Alternative splicing a regulated gene expression process that allows a single genetic sequence to code for multiple proteins. Here is that latest research.