DOI: 10.1101/494120Dec 12, 2018Paper

Factors influencing the measurement of assimilation and stomatal conductance with the LI-COR 6400XT gas exchange system.

BioRxiv : the Preprint Server for Biology
Daniel LeCain, Sean Gleason


Abstract: Although CO2 and H2O exchange rates are often measured in experiments as indicators of physiological plant responses these gas exchange measurements are prone to large experimental error. Gas exchange equipment and technology have improved greatly over the past two decades which supports scrutinizing current issues of experimental error in measuring plant photosynthesis and stomatal conductance. This report shows results of a greenhouse experiment with the goal of identifying lessor understood sources of experimental error and variation in measurements with the LI-COR 6400XT gas exchange system. A variety of plant types were used to encompass differing species variation. We found significant sources of experimental error in 1) the time for initial adjustment when placing a leaf in the leaf chamber 2) the time-of-day when measuring 3) leaf age 4) having the chamber window full vs. partially full with leaf tissue 5) using a leaf chamber environment that greatly diverges from the whole plant environment 6) differing degree of experimental error depending upon plant species. A situation with multiple contributors to error would result in useless gas-exchange data. Recommendations for minimizing these experimental errors a...Continue Reading

Related Concepts

Carbon Dioxide
Pulmonary Gas Exchange
Plant Leaves
Research Study

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.