Apr 7, 2020

Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1

BioRxiv : the Preprint Server for Biology
S. M. TravisFrederick M Hughson

Abstract

Multisubunit tethering complexes (MTCs) are large (250 to >750 kDa), conserved macromolecular machines that are essential for SNARE-mediated membrane fusion in all eukaryotes. MTCs are thought to function as organizers of membrane trafficking, mediating the initial, long-range interaction between a vesicle and its target membrane and promoting the formation of membrane-bridging SNARE complexes. Previously, we reported the structure of the Dsl1 complex, the simplest known MTC, which is essential for COPI-mediated transport from the Golgi to the endoplasmic reticulum (ER). This structure suggested how the Dsl1 complex might function to tether a vesicle to its target membrane by binding at one end to the COPI coat and at the other end to ER SNAREs. Here, we use x-ray crystallography to investigate these Dsl1-SNARE interactions in greater detail. The Dsl1 complex comprises three subunits that together form a two-legged structure with a central hinge. Our results show that distal regions of each leg bind N-terminal Habc domains of the ER SNAREs Sec20 (a Qb-SNARE) and Use1 (a Qc-SNARE). The observed binding modes appear to anchor the Dsl1 complex to the ER target membrane while simultaneously ensuring that both SNAREs are in open con...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Hydrogen sulfite
DNA Methylation [PE]
Size
Genome
DNA Methylation
Sequencing
Species
Comparative Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.