Oct 31, 2018

Feasibility of Topological Data Analysis for event-related fMRI

BioRxiv : the Preprint Server for Biology
Cameron T. EllisJonathan D. Cohen


Recent fMRI research shows that perceptual and cognitive representations are instantiated in high-dimensional multi-voxel patterns in the brain. However, the methods for detecting these representations are limited. Topological Data Analysis (TDA) is a new approach, based on the mathematical field of topology, that can detect unique types of geometric features in patterns of data. Several recent studies have successfully applied TDA to study various forms of neural data; however, to our knowledge, TDA has not been successfully applied to data from event-related fMRI designs. Event-related fMRI is very common but limited in terms of the number of events that can be run within a practical time frame and the effect size that can be expected. Here, we investigate whether persistent homology, a popular TDA tool that identifies topological features in data and quantifies their robustness, can identify known signals given these constraints. We use fmrisim, a Python-based simulator of realistic fMRI data, to assess the plausibility of recovering a simple topological representation under a variety of conditions. Our results suggest that persistent homology can be used under certain circumstances to recover topological structure embedded ...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

TDA cpd

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Journal of Cognitive Neuroscience
Robert S Chavez, Todd F Heatherton
Proceedings of the National Academy of Sciences of the United States of America
Michael EstermanSteven Yantis
© 2020 Meta ULC. All rights reserved