Finding hotspots: development of an adaptive spatial sampling approach

MedRxiv : the Preprint Server for Health Sciences
R. Andrade PachecoHugh JW Sturrock


The identification of disease hotspots is an increasingly important public health problem. While geospatial modeling offers an opportunity to predict the locations of hotspots using suitable environmental and climatological data, little attention has been paid to optimizing the design of surveys used to inform such models. Here we introduce an adaptive sampling scheme optimized to identify hotspot locations where prevalence exceeds a relevant threshold. Our approach incorporates ideas from Bayesian optimization theory to adaptively select sample batches. We present an experimental simulation study based on survey data of schistosomiasis and lymphatic filariasis across four countries. Results across all scenarios explored show that adaptive sampling produces superior results and suggest that similar performance to random sampling can be achieved with a fraction of the sample size.

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.