Sep 10, 2010

Fixed point characterization of biological networks with complex graph topology

Bioinformatics
Nicole E Radde

Abstract

Feedback circuits are important motifs in biological networks and part of virtually all regulation processes that are needed for a reliable functioning of the cell. Mathematically, feedback is connected to complex behavior of the systems, which is often related to bifurcations of fixed points. Therefore, several approaches for the investigation of fixed points in biological networks have been developed in recent years. Many of them assume the fixed point coordinates to be known, and an efficient way to calculate the entire set of fixed points for interrelated feedback structures is highly desirable. In this article, we consider regulatory network models, which are differential equations with an underlying directed graph that illustrates independencies among variables. We introduce the circuit-breaking algorithm (CBA), a method that constructs one-dimensional characteristics for these network models, which inherit important information about the system. In particular, fixed points are related to the zeros of these characteristics. The CBA operates on the graph topology, and results from graph theory are used in order to make calculations efficient. Our framework provides a general scheme for analyzing network models in terms of ...Continue Reading

  • References13
  • Citations5

References

Mentioned in this Paper

Metabolic Networks and Pathways
Computer Graphics
Hepatocyte
Anatomy, Regional
Systems Biology
Calcium Waves

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.