DOI: 10.1101/483339Nov 29, 2018Paper

Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa

BioRxiv : the Preprint Server for Biology
Amy E BakerGeorge A O'Toole

Abstract

Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. C-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here we show that just as c-di-GMP can influence the stators, stators can impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production in conditions not permissive to motility. This regulation implies a positive feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help define the bidirectional interactions between c-di-GMP and the motility machinery.

Related Concepts

Cell Motility
Enzyme Repression
Guanosine Monophosphate
Pseudomonas aeruginosa
bis(3',5')-cyclic diguanylic acid
Diguanylate cyclase
Surface
MotC protein, Rhizobium meliloti
Zone of Cilium
Biofilm Formation

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Biofilms

Biofilms are adherent bacterial communities embedded in a polymer matrix and can cause persistent human infections that are highly resistant to antibiotics. Discover the latest research on Biofilms here.

Biofilm & Infectious Disease

Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections.Here is the latest research on biofilm and infectious diseases.