Jun 27, 2020

Flexible recruitment of memory-based choice representations by the human medial frontal cortex

Science
Juri MinxhaUeli Rutishauser

Abstract

Decision-making in complex environments relies on flexibly using prior experience. This process depends on the medial frontal cortex (MFC) and the medial temporal lobe, but it remains unknown how these structures implement selective memory retrieval. We recorded single neurons in the MFC, amygdala, and hippocampus while human subjects switched between making recognition memory-based and categorization-based decisions. The MFC rapidly implemented changing task demands by using different subspaces of neural activity and by representing the currently relevant task goal. Choices requiring memory retrieval selectively engaged phase-locking of MFC neurons to amygdala and hippocampus field potentials, thereby enabling the routing of memories. These findings reveal a mechanism for flexibly and selectively engaging memory retrieval and show that memory-based choices are preferentially represented in the frontal cortex when required.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Finding
Frontal Lobe
Temporal Lobe
Hippocampus (Brain)
Objective (Goal)
Medial
Amygdaloid Structure
Decision Making
Gray Matter of Medial Frontal Gyrus
Retrieval

Related Feeds

Amygdala and Midbrain Dopamine

The midbrain dopamine system is widely studied for its involvement in emotional and motivational behavior. Some of these neurons receive information from the amygdala and project throughout the cortex. When the circuit and transmission of dopamine is disrupted symptoms may present. Here is the latest research on the amygdala and midbrain dopamine.

Amygdala: Sensory Processes

Amygdalae, nuclei clusters located in the temporal lobe of the brain, play a role in memory, emotional responses, and decision-making. Here is the latest research on sensory processes in the amygdala.