Fluctuating Bacteriophage-induced galU Deficiency Region is Involved in Trade-off Effects on the Phage and Fluoroquinolone Sensitivity in Pseudomonas aeruginosa.

Virus Research
Keisuke NakamuraHidetomo Iwano

Abstract

Pseudomonas aeruginosa, which causes chronic infections, has demonstrated rapid acquisition of antimicrobial resistance (AMR). Therefore, bacteriophages have received significant attention as promising antimicrobial agents; however, previous trials have reported the occurrence of phage-resistant variants. P. aeruginosa has lost large chromosomal fragments via evolutionary selection by MutL. Mutants lacking galU and hmgA, located in close proximity, exhibit phage resistance and brown color phenotype since hmgA encodes a homogentisic acid metabolic enzyme and deletion of galU results in a lack of O-antigen polysaccharide and absence of the phage receptor. In the present study, we evaluated this mechanism for controlling phage resistance in P. aeruginosa veterinary isolate Pa12. Phage-resistant Pa12 brown mutants (brmts) with galU and hmgA deletions were isolated. Whole-genome sequencing of the brmts revealed that regions 148-27 kbp upstream and 261-110 kbp downstream of galU were largely deleted from the Pa12 parental chromosome. Furthermore, all of these fluctuating deleted sequences in Pa12 brmts, tentatively designated bacteriophage-induced galU deficiency (BigD) regions, harbor multi-drug efflux system genes (mexXY). Minimum ...Continue Reading

Related Concepts

Related Feeds

Antimicrobial Resistance (ASM)

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.

Antimicrobial Resistance

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.

Bacteriophage: Phage Therapy

Phage therapy uses bacterial viruses (bacteriophages) to treat bacterial infections and is widely being recognized as an alternative to antibiotics. Here is the latest research.