Apr 30, 2020

From ATOM to GradiATOM: Cortical gradients support time and space processing as revealed by a meta-analysis of neuroimaging studies

BioRxiv : the Preprint Server for Biology
Giorgia ConaCristina Scarpazza


According to the ATOM (A Theory Of Magnitude), formulated by Walsh more than fifteen years ago, there is a general system of magnitude in the brain that comprises regions, such as the parietal cortex, shared by space, time and other magnitudes (Walsh, 2003). The present meta-analysis of neuroimaging studies used the Activation Likelihood Estimation (ALE) method in order to determine the set of regions commonly activated in space and time processing and to establish the neural activations specific to each magnitude domain. Following PRISMA guidelines, we included in the analysis a total of 112 and 114 experiments, exploring space and time processing, respectively. We clearly identified the presence of a system of brain regions commonly recruited in both space and time and that includes: bilateral insula, the pre-supplementary motor area (SMA), the right frontal operculum and the intraparietal sulci. These regions might be the best candidates to form the core magnitude neural system. Surprisingly, along each of these regions but the insula, ALE values progressed in a cortical gradient from time to space. The SMA exhibited an anterior-posterior gradient, with space activating more-anterior regions (i.e., pre-SMA) and time activati...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Research Activities
Frontal Bone Structure
Research Study
Space - Property
Frontal Operculum
Parietal Region
Surface of Insula
Meta Analysis (Statistical Procedure)

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2020 Meta ULC. All rights reserved