Apr 6, 2011

Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold

Soroor SharifpoorJ Paul Santerre


There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyure...Continue Reading

Mentioned in this Paper

Muscle, Smooth, Vascular
Pathologic Cytolysis
Neuro-Oncological Ventral Antigen 2
Monoclonal Antibodies
Biochemical Pathway

Related Feeds

Adhesion Molecules in Health and Disease

Cell adhesion molecules are a subset of cell adhesion proteins located on the cell surface involved in binding with other cells or with the extracellular matrix in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings. Cell adhesion is a crucial component in maintaining tissue structure and function. Discover the latest research on adhesion molecule and their role in health and disease here.

Artificial Cell Models

This feed focuses on biomimetrics, synthetic biology and bio- and tissue-engineering approaches used for modeling human diseases.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.


Biomechanics examines the generation of internal forces within the body and investigates the effects and control of forces that act on or are produced on tissues. Here are the latest discoveries.