Functional genetic characterization by CRISPR-Cas9 of two enhancers of FOXP2 in a child with speech and language impairment

BioRxiv : the Preprint Server for Biology
Raul Torres-RuizPaloma Garcia-Bellido

Abstract

Mutations in the coding region of FOXP2 are known to cause speech and language impairment. Microdeletions involving the region downstream the gene have been also associated to speech and cognitive deficits. We recently described a girl harbouring a complex chromosomal rearrangement with one breakpoint downstream the gene that might affect their speech and cognitive abilities via physical separation of distant regulatory DNA elements. In this study, we have used highly efficient targeted chromosomal deletions induced by the CRISPR/Cas9 genome editing tool to demonstrate the functionality of two enhancers (FOXP2-Eproximal and FOXP2-Edistal) located in the intergenic region between FOXP2 and its adjacent MDFIC gene. Deletion of any of these two functional enhancers in the neuroblastomic cell line SK-N-MC downregulates FOXP2 and decreases FOXP2 protein levels, conversely it upregulates MDFIC and increases MDFIC protein levels. This suggests that both regulatory elements may be shared between FOXP2 and MDFIC. We expect these findings contribute to a deeper understanding of how FOXP2 and MDFIC are regulated to pace neuronal development supporting speech and language.

Related Concepts

Chromosome Deletion
Down-Regulation
Gene Deletion
Genes
Neurons
Regulatory Sequences, Nucleic Acid
Speech
Up-Regulation (Physiology)
Cell Line, Tumor
Adjacent

Related Feeds

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.

© 2021 Meta ULC. All rights reserved