Further genetic diversification in multiple tumors and an evolutionary perspective on therapeutics

BioRxiv : the Preprint Server for Biology
Yong TaoChung-I Wu


The genetic diversity within a single tumor can be extremely large, possibly with mutations at all coding sites (Ling et al. 2015). In this study, we analyzed 12 cases of multiple hepatocellular carcinoma (HCC) tumors by sequencing and genotyping several samples from each case. In 10 cases, tumors are clonally related by a process of cell migration and colonization. They permit a detailed analysis of the evolutionary forces (mutation, migration, drift and natural selection) that influence the genetic diversity both within and between tumors. In 23 inter-tumor comparisons, the descendant tumor usually shows a higher growth rate than the parent tumor. In contrast, neutral diversity dominates within-tumor observations such that adaptively growing clones are rarely found. The apparent adaptive evolution between tumors can be explained by the inherent bias for detecting larger tumors that have a growth advantage. Beyond these tumors are a far larger number of clones which, growing at a neutral rate and too small to see, can nevertheless be verified by molecular means. Given that the estimated genetic diversity is often very large, therapeutic strategies need to take into account the pre-existence of many drug-resistance mutations. I...Continue Reading

Related Concepts

Biological Evolution
Tumor Tissue Sample
Gene Mutation
Genotype Determination
Nucleic Acid Sequencing
Migration, Cell

Related Feeds

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.