DOI: 10.1101/512954Jan 7, 2019Paper

GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice

BioRxiv : the Preprint Server for Biology
Srikanta ChowdhuryAkihiro Yamanaka

Abstract

The daily sleep/wakefulness cycle is regulated by coordinated interactions between sleep- and wakefulness-regulating neural circuitry. However, the detailed neural circuitry mediating sleep is far from understood. Here, we found that glutamic acid decarboxylase 67 (Gad67)-positive GABAergic neurons in the ventral tegmental area (VTAGad67+) are a key regulator of non-rapid eye movement (NREM) sleep in mice. VTAGad67+ neurons project to multiple brain areas implicated in sleep/wakefulness regulation such as the lateral hypothalamus (LH) and dorsal raphe nucleus. Chemogenetic activation of VTAGad67+ neurons promoted NREM sleep with higher delta power whereas optogenetic inhibition of these neurons induced prompt arousal from NREM sleep under highly somnolescent conditions, but not during REM sleep. In vivo fiber photometry recordings revealed that VTAGad67+ neurons showed the highest population activity in NREM sleep and the lowest activity in REM sleep. Acute brain slice electrophysiology combined with optogenetics revealed that VTAGad67+ neurons directly innervate and inhibit wake-promoting orexin/hypocretin neurons in the LH by releasing GABA. Taken together, we reveal that VTAGad67+ neurons play a crucial role in the regulatio...Continue Reading

Related Concepts

Arousal
Brain
Eye Movements
Glutamate Decarboxylase
Hypothalamic Structure
Laboratory mice
Neurons
Photometry
Sleep
Sleep, REM

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cardiac Electrophysiology

Cardiac electrophysiology is the study of electrical activities of the heart and includes the assessment, diagnosis, and treatment of cardiac events. Find the latest research on cardiac electrophysiology here.