Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans
Abstract
Genetic screening has identified a group of mec (mechanosensory) genes that are required for the function of a set of six touch-receptor neurons in the nematode Caenorhabditis elegans. Such genes potentially encode components of the mechanosensory apparatus. We have cloned one of these genes, mec-10, which is a member of the degenerin gene family (genes such as mec-4 and deg-1 that can be mutated to cause neurodegeneration). Because components of an amiloride-sensitive sodium channel (alpha, beta and gamma rENaC) from rat share considerable sequence similarity with the C. elegans genes, it is likely that degenerins may function as channel proteins. Here we show that two degenerin homologues (mec-4 and mec-10) are expressed in the same cells, although each provides a unique function. Based on genetic data of mutations affecting mec-10-induced degeneration, we propose that the products of three genes (mec-4, mec-10 and mec-6) form a complex needed for mechanosensation, and that several other mec genes may be important in regulating the putative channel complex.
References
Citations
Gating of Na channels in the rat cortical collecting tubule: effects of voltage and membrane stretch
Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity
The epithelial Na+ channel: cell surface insertion and retrieval in Na+ homeostasis and hypertension
Related Concepts
Trending Feeds
COVID-19
Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.
Synthetic Genetic Array Analysis
Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.
Congenital Hyperinsulinism
Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.
Neural Activity: Imaging
Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.
Chronic Fatigue Syndrome
Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.
Epigenetic Memory
Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.
Cell Atlas of the Human Eye
Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.
Femoral Neoplasms
Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.
STING Receptor Agonists
Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.