Jan 1, 2014

Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats

Development, Growth & Differentiation
Tomoji Mashimo

Abstract

The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed.

  • References58
  • Citations23

Citations

Mentioned in this Paper

Embryo
Zinc Fingers
CRISPR-Cas Systems
Genetic Analysis
Endonuclease
Genetic Screening Method
Nuclease
Transcription Coactivator
Clustered Regularly Interspaced Short Palindromic Repeats
Endodeoxyribonuclease

Related Feeds

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

© 2020 Meta ULC. All rights reserved