Feb 29, 2020

Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease

Nature Communications
Zheng WuGong Chen

Abstract

Huntington's disease (HD) is caused by Huntingtin (Htt) gene mutation resulting in the loss of striatal GABAergic neurons and motor functional deficits. We report here an in vivo cell conversion technology to reprogram striatal astrocytes into GABAergic neurons in both R6/2 and YAC128 HD mouse models through AAV-mediated ectopic expression of NeuroD1 and Dlx2 transcription factors. We found that the astrocyte-to-neuron (AtN) conversion rate reached 80% in the striatum and >50% of the converted neurons were DARPP32+ medium spiny neurons. The striatal astrocyte-converted neurons showed action potentials and synaptic events, and projected their axons to the targeted globus pallidus and substantia nigra in a time-dependent manner. Behavioral analyses found that NeuroD1 and Dlx2-treated R6/2 mice showed a significant extension of life span and improvement of motor functions. This study demonstrates that in vivo AtN conversion may be a disease-modifying gene therapy to treat HD and other neurodegenerative disorders.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

In Vivo
Gene Therapy
Globus Pallidus
Synapses
DLX2 gene
AAVS1
HTT
NEUROD1
HD protein, human
Mouse Model

Related Feeds

Astrocytes & Huntington’s Disease

Astrocytes are abundant within the central nervous system and their dysfunction has been thought to be an important contributor to some neurodegenerative diseases, in particular Huntington’s disease. Damage to these cells may make neurons more susceptible to degeneration. Here is the latest research on astrocytes and Huntington’s disease.

Astrocytes and Neurodegeneration

Astrocytes are important for the health and function of the central nervous system. When these cells stop functioning properly, either through gain of function or loss of homeostatic controls, neurodegenerative diseases can occur. Here is the latest research on astrocytes and neurodegeneration.

Astrocytes & Huntington’s Disease (MDS)

Astrocytes are abundant within the central nervous system and their dysfunction has been thought to be an important contributor to some neurodegenerative diseases, in particular Huntington’s disease. Damage to these cells may make neurons more susceptible to degeneration. Here is the latest research on astrocytes and Huntington’s disease.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.