Apr 24, 2020

Genetic dissection of glutamatergic neuron subpopulations and developmental trajectories in the cerebral cortex

BioRxiv : the Preprint Server for Biology
K. S. H. MathoZ. Josh Huang


Diverse types of glutamatergic pyramidal neurons (PyNs) mediate the myriad processing streams and output channels of the cerebral cortex, yet all derive from neural progenitors of the embryonic dorsal telencephalon. Here, we establish genetic strategies and tools for dissecting and fate mapping PyN subpopulations based on their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target the temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen of temporally inducible mouse Cre and Flp knock-in driver lines to enable combinatorial targeting of major progenitor types and projection classes. Intersectional converter lines confer viral access to specific subsets defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for multi-modal characterization of PyN subpopulations and tracking their developmental trajectories toward elucidating the organization and assembly of cortical processing networks and output channels.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Computer Technology
Research Personnel
Objective (Goal)
Pathway Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Current Opinion in Biotechnology
James D WinklerRyan T Gill
Current Issues in Molecular Biology
Jianping Xu
The Journal of Experimental Biology
John Quackenbush
© 2020 Meta ULC. All rights reserved