Nov 19, 2019

Genetic Diversity of CMY Beta-Lactamase Genes in Clinical Isolates of Escherichia coli in Myanmar: Identification of Three Novel Types and Updated Phylogenetic Classification of blaCMY

Microbial Drug Resistance : MDR : Mechanisms, Epidemiology, and Disease
Nilar SanNobumichi Kobayashi


The dissemination of CMY-type enzymes, one of the plasmid-mediated AmpC beta-lactamases, among Enterobacteriaceae has become an important public health concern. In this study, genetic diversity of CMY beta-lactamase genes was investigated for 50 blaCMY-positive isolates detected from 426 clinical isolates of Escherichia coli in Yangon, Myanmar. CMY genes were differentiated into 9 types, with blaCMY-42 being predominant (22 isolates, 44%), followed by blaCMY-2, blaCMY-6, blaCMY-146, and included three novel types (CMY-156, CMY-158, CMY-159). Among E. coli harboring blaCMY, phylogenetic group D-sequence type (ST)405 and A-ST410 were the most common genotypes, and blaCTX-M-15 was detected in 72% (36/50) of isolates. blaCMY-42 was distributed to phylogenetic groups A, B1, and D E. coli with 11 STs, which included 10 isolates harboring carbapenemase genes (blaNDM-4, blaNDM-5, or blaNDM-7). Phylogenetic analysis of all the blaCMY genes reported to date, including the three novel types in the present study, revealed the presence of at least four distinct genetic groups, that is, CMY-1, CMY-2, CMY-70, and CMY-98 group, showing less than 91% nucleotide sequence identities among different groups. CMY-2 group beta-lactamase genes, which ...Continue Reading

  • References34
  • Citations
  • References34
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

TMEM42 gene
Phylogenetic Analysis
Citrobacter freundii
Supernumerary Maxillary Left Second Molar
IS 159

Related Feeds

CRISPR Screens in Drug Resistance

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of CRISPR-Cas system in high-throughput genome-wide screens to identify genes that may confer drug resistance.