Mar 3, 2016

Genetic heterogeneity in autism: from single gene to a pathway perspective

BioRxiv : the Preprint Server for Biology
Joon Yong An, Charles Claudianos

Abstract

The extreme genetic heterogeneity of autism spectrum disorder (ASD) represents a major challenge. Recent advances in genetic screening and systems biology approaches have extended our knowledge of the genetic etiology of ASD. In this review, we discuss the paradigm shift from a single gene causation model to pathway perturbation model as a guide to better understand the pathophysiology of ASD. We discuss recent genetic findings obtained through next-generation sequencing (NGS) and examine various integrative analyses using systems biology and complex networks approaches that identify convergent patterns of genetic elements associated with ASD. This review provides a summary of the genetic findings of family-based genome screening studies.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biochemical Pathway
Genes
Genetic Screening (Procedure)
Autistic Disorder
Etiology
Massively-Parallel Sequencing
Autism Spectrum Disorders
Physiopathological
Analysis
Paradigm

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Autism

Autism spectrum disorder is associated with challenges with social skills, repetitive behaviors, and often accompanied by sensory sensitivities and medical issues. Here is the latest research.

Autism: Treatment Targets

The absence of effective treatments for autism are due to the high clinical and genetic heterogeneity between affected individuals, restricted knowledge of the underlying pathophysiological mechanisms, and the lack of reliable diagnostic biomarkers. Identification of more homogenous biological subgroups is therefore essential for the development of novel treatments based on the molecular mechanisms underpinning autism and autism spectrum disorders. Find the latest research on autism treatment targets here.