Jun 1, 1979

Genetic instability of sporulation-associated characters in a Bacillus subtilis mutant: relationship between sporulation, segregation and the synthesis of extracellular enzymes (kinetic studies)

Journal of General Microbiology
J ZuccaM T Silva

Abstract

In the genetically unstable, protease-overproducing 'medusa (M) strains of Bacillus subtilis, segregation of stable, wild-type-like B cells occurred mainly during sporulation. After the end of the exponential growth phase, a small fraction of M cells sporulated quickly and formed M spores, while the majority of the cells, after a 'critical period', gave rise to B segregants which sporulated after a delay. Segregation occurred without cell division. Delayed sporulation, segregation and protease overproduction are related. Similar but more complex results were obtained with the highly unstable TD strains. Sporulation and the kinetics of protease overproduction were also followed in several stable segregants. Depending on the strain, either the rate of protease production or both the rate and time course were affected. The results are interpreted in terms of sequential activation and de-activation of sporulation genes. The production of the alkaline and the neutral proteases was, in general, under common genetic control. In some strains alpha-amylase was also overproduced.

  • References
  • Citations2

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations2

Citations

Mentioned in this Paper

Sporulation
Extracellular
Enzymes, antithrombotic
Spores, Bacterial
Cell Division
Peptide Hydrolases
Reproduction Spores
Endopeptidases
Proteolytic Enzyme
B-Lymphocytes

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.