Apr 1, 2020

Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly-elicited genes

BioRxiv : the Preprint Server for Biology
D. De VegaA. Newton


Current crop protection strategies against the fungal pathogen Botrytis cinerea rely on a combination of conventional fungicides and host genetic resistance. However, due to pathogen evolution and legislation in the use of fungicides, these strategies are not sufficient to protect plants against this pathogen. Defence elicitors can stimulate plant defence mechanisms through a phenomenon known as priming. Priming results in a faster and/or stronger expression of resistance upon pathogen recognition by the host. This work aims to study priming of a commercial formulation of the elicitor chitosan. Treatments with chitosan result in induced resistance in solanaceous and brassicaceous plants. In tomato plants, enhanced resistance has been linked with priming of callose deposition and accumulation of the plant hormone jasmonic acid (JA). Large-scale transcriptomic analysis revealed that chitosan primes gene expression at early time-points after infection. In addition, two novel tomato genes with a characteristic priming profile were identified, Avr9/Cf-9 rapidly-elicited protein 75 (ACRE75) and 180 (ACRE180). Transient and stable overexpression of ACRE75, ACRE180 and their Nicotiana benthamiana homologs, revealed that they are positi...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Genetic Studies
Psl1 protein, mouse
Genetic Loci
Chromosome Mapping
EAF2 gene
BAT Loci

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.