DOI: 10.1101/219485Nov 14, 2017Paper

Genetic Single Neuron Anatomy reveals fine granularity of cortical interneuron subtypes

BioRxiv : the Preprint Server for Biology
Xiaojun WangZ Josh Huang

Abstract

Parsing diverse nerve cells into biological types is necessary for understanding neural circuit organization. Morphology is an intuitive criterion for neuronal classification and a proxy of connectivity, but morphological diversity and variability often preclude resolving the granularity of discrete cell groups from population continuum. Combining genetic labeling with high-resolution, large volume light microscopy, we established a platform of genetic single neuron anatomy that resolves, registers and quantifies complete neuron morphologies in the mouse brain. We discovered that cortical axo-axonic cells (AACs), a cardinal GABAergic interneuron type that controls pyramidal neuron (PyN) spiking at axon initial segment, consist of multiple subtypes distinguished by laminar position, dendritic and axonal arborization patterns. Whereas the laminar arrangements of AAC dendrites reflect differential recruitment by input streams, the laminar distribution and local geometry of AAC axons enable differential innervation of PyN ensembles. Therefore, interneuron types likely consist of fine-grained subtypes with distinct input-output connectivity patterns.

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.