DOI: 10.1101/515882Jan 14, 2019Paper

Genetic variants of calcium and vitamin D metabolism in kidney stone disease

BioRxiv : the Preprint Server for Biology
Sarah Anne HowlesDominic Furniss


Kidney stone disease (nephrolithiasis) is a major clinical and economic health burden1,2 with a heritability of ~45-60%3. To identify genetic variants associated with nephrolithiasis we performed genome-wide association studies (GWAS) and meta-analysis in British and Japanese populations, including 12,123 nephrolithiasis cases and 416,928 controls. Twenty loci associated with nephrolithiasis were identified, ten of which are novel. A novel CYP24A1 locus is predicted to affect vitamin D metabolism and five loci, DGKD, DGKH, WDR72, GPIC1, and BCR, are predicted to influence calcium-sensing receptor (CaSR) signaling. In a validation cohort of nephrolithiasis patients the CYP24A1-associated locus correlated with serum calcium concentration and number of kidney stone episodes, and the DGKD-associated locus correlated with urinary calcium excretion. Moreover, DGKD knockdown impaired CaSR-signal transduction in vitro, an effect that was rectifiable with the calcimimetic cinacalcet. Our findings indicate that genotyping may inform risk of incident kidney stone disease prior to vitamin D supplementation and facilitate precision-medicine approaches, by targeting CaSR-signaling or vitamin D activation pathways in patients with recurrent k...Continue Reading

Related Concepts

Kidney Calculi
Signal Transduction
Urologic Diseases
Vitamin D
Excretory Function
Calcium-Sensing Receptor

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Calcium & Bioenergetics

Bioenergetic processes, including cellular respiration and photosynthesis, concern the transformation of energy by cells. Here is the latest research on the role of calcium in bioenergetics.