Feb 22, 2016

Genome-culture coevolution promotes rapid divergence in the killer whale

BioRxiv : the Preprint Server for Biology
Andrew D FooteJochen Wolf

Abstract

The interaction between ecology, culture and genome evolution remains poorly understood. Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and postzygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step toward an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genetic Drift
Study
Diet
Genome
Isolation Aspects
Reconstructive Surgical Procedures
Neuronal Plasticity
Cell Differentiation Process
Genomics
Cell Growth

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.