Mar 29, 2020

CyclinD1 controls development of cerebellar granule cell progenitors through phosphorylation and stabilization of ATOH1

BioRxiv : the Preprint Server for Biology
Sathoshi MiyashitaS. Aida

Abstract

Here we report that CyclinD1 (CCND1) directly regulates both the proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates Ser309 of ATOH1, which inhibits additional phosphorylation at S328, consequently preventing Ser328 phosphorylation-dependent ATOH1 degradation. PROX1 downregulates Ccnd1 expression by histone-deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferation and immaturity of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which was suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Protein Binding
Genome
Genes
Regulation of Biological Process
Candidate Disease Gene
F3 wt Allele
Mouse Cell Line
Gene Expression
Whole Genome Amplification

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.