Dec 25, 2012

Genome-wide distribution of DNA methylation and DNA demethylation and related chromatin regulators in cancer

Biochimica Et Biophysica Acta
Yiqun JiangYongguang Tao

Abstract

DNA methylation plays an important role in the regulation of gene expression, as it is the first epigenetic modification to take place on a given DNA strand. Several factors may directly or indirectly regulate the dynamic distribution of DNA methylation and demethylation between intergenic and intragenic gene regions, thereby controlling gene expression. CpG islands have direct implications for the understanding of DNA methylation patterns in normal conditions and in some common disease states, including cancer. Here, we summarize several recent studies on the genome-wide distribution of DNA methylation and demethylation and their related factors, and we discuss the potential of DNA methylation and demethylation patterns to contribute to gene transcription patterns in tumorigenesis.

Mentioned in this Paper

RNA Polymerase II
Tumor Cells, Uncertain Whether Benign or Malignant
Prostatic Neoplasms
Biochemical Pathway
Mitochondrial Complex I Deficiency
DNA Methylation [PE]
Transcriptional Regulation
Nucleosomes
Histone antigen
Tumor Suppressor Genes

Related Feeds

Cancer Genomics (Keystone)

Cancer genomics approaches employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research using such technologies in this feed.

Cancer Epigenetics & Methyl-CpG (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. Here is the latest research on cancer epigenetics and methyl-CpG binding proteins including ZBTB38.

Cell Signaling & Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. This feed covers the latest research on signaling and epigenetics in cell growth and cancer.

Cancer Genomics

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research here.

Cancer Epigenetics

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.

Cancer Epigenetics & Metabolism (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on the relationship between cell metabolism, epigenetics and tumor differentiation.

Cancer Epigenetics and Senescence (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may be involved in regulating senescence in cancer cells. This feed captures the latest research on cancer epigenetics and senescence.

Blood And Marrow Transplantation

The use of hematopoietic stem cell transplantation or blood and marrow transplantation (bmt) is on the increase worldwide. BMT is used to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Here is the latest research on bone and marrow transplantation.

Cancer Epigenetics Chromatin Complexes (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on chromatin complexes and their role in cancer epigenetics.

Cardiovascular Disease & TET2

Cardiovascular diseases are the number one cause of deaths globally. Tet methylcytosine dioxygenase 2 (TET2)-mediated hematopoiesis has been implicated in accelerating heart failure. Here is the latest research on cardiovascular diseases and TET2.

Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.

Cancer Epigenetics and Chromatin (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on chromatin and its role in cancer epigenetics please follow this feed to learn more.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.