Jun 15, 2007

Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus

Environmental Microbiology
Peter WeigeleRoger W Hendrix

Abstract

Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus. Its 177,300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair. Syn9 shows significant mosaicism when compared with related cyanophages S-PM2, P-SSM2 and P-SSM4, although shared genes show strong purifying selection and evidence for large population sizes relative to other phages. Related to coliphage T4 - which shares 19% of Syn9's genes - Syn9 shows evidence for different patterns of DNA replication and uses homologous proteins to assemble capsids with a different overall structure that shares topology with phage SPO1 and herpes virus. Noteworthy bacteria-related sequences in the Syn9 genome potentially encode subunits of the photosynthetic reaction centre, electron transport proteins, three pentose pathway enzymes and two tryptophan halogenases. These genes suggest that Syn9 is well adapted to the physiology of its photosynthetic hosts and may affect the evolution of these sequences wi...Continue Reading

  • References78
  • Citations98

Mentioned in this Paper

Synechococcus
Biochemical Pathway
Tryptophan
Prochlorococcus
Genome
Enzymes, antithrombotic
Virion
SDS-PAGE
Energy Metabolism
Bacteriophages

Related Feeds

Bacteriophage: Phage Therapy

Phage therapy uses bacterial viruses (bacteriophages) to treat bacterial infections and is widely being recognized as an alternative to antibiotics. Here is the latest research.