Jun 3, 2014

Genomic, transcriptomic and phenomic variation reveals the complex adaptation of modern maize breeding

BioRxiv : the Preprint Server for Biology
Haijun LiuJianbing Yan

Abstract

The temperate-tropical division of early maize germplasm to different agricultural environments was arguably the greatest adaptation process associated with the success and near ubiquitous importance of global maize production. Deciphering this history is challenging, but new insight has been gained from the genomic, transcriptomic and phenotypic variation collected from 368 diverse temperate and tropical maize inbred lines in this study. This is the first attempt to systematically explore the mechanisms of the adaptation process. Our results indicated that divergence between tropical and temperate lines seem occur 3,400-6,700 years ago. A number of genomic selection signals and transcriptomic variants including differentially expressed individual genes and rewired co-expression networks of genes were identified. These candidate signals were found to be functionally related to stress response and most were associated with directionally selected traits, which may have been an advantage under widely varying environmental conditions faced by maize as it was migrated away from its domestication center. It’s also clear in our study that such stress adaptation could involve evolution of protein-coding sequences as well as transcripto...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Health Center
Study
Biological Adaptation to Stress
Exons
Genome
Genes
Inbred Strain
Environment
Zea mays
Genomics

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.