Gibbs Free Energy of Protein-Protein Interactions Reflects Tumor Stage

BioRxiv : the Preprint Server for Biology
Edward RietmanGiannoula Lakka Klement

Abstract

The sequential changes occurring with cancer progression are now being harnessed with therapeutic intent. Yet, there is no understanding of the chemical thermodynamics of proteomic changes associated with cancer progression/ cancer stage. This manuscript reveals a strong correlation of a chemical thermodynamic measure (known as Gibbs free energy) of protein-protein interaction networks for several cancer types and 5-year overall survival and stage in patients with cancer. Earlier studies have linked degree entropy of signaling networks to patient survival data, but not with stage. It appears that Gibbs free energy is a more general metric and accounts better for the underlying energetic landscape of protein expression in cells, thus correlating with stage as well as survival. This is an especially timely finding because of improved ability to obtain and analyze genomic/ proteomic information from individual patients. Yet, at least at present, only candidate gene imaging (FISH or immunohistochemistry) can be used for entropy computations. With continually expanding use of genomic information in clinical medicine, there is an ever-increasing need to understand the thermodynamics of protein-protein interaction networks.

Related Concepts

Study
Fluorescent in Situ Hybridization
Immunohistochemistry
Genome
Clinical Medicine
Candidate Disease Gene
Neoplasms
Cancer Progression
Tumor proteins
Proteomics

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Genomics (Keystone)

Cancer genomics approaches employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research using such technologies in this feed.

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

Cancer Genomics

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research here.

© 2020 Meta ULC. All rights reserved