Jun 6, 2019

Glacial runoff promotes deep burial of sulfur cycling-associated microorganisms in marine sediments

BioRxiv : the Preprint Server for Biology
Claus PelikanAlexander Loy

Abstract

Marine fjords with active glacier outlets are hot spots for organic matter burial in the sediments and subsequent microbial mineralization, and will be increasingly important as climate warming causes more rapid glacial melt. Here, we investigated controls on microbial community assembly in sub-arctic glacier-influenced (GI) and non-glacier-influenced (NGI) marine sediments in the Godthabsfjord region, south-western Greenland. We used a correlative approach integrating 16S rRNA gene and dissimilatory sulfite reductase (dsrB) amplicon sequence data over six meters of depth with biogeochemistry, sulfur-cycling activities, and sediment ages. GI sediments were characterized by comparably high sedimentation rates and had 'young' sediment ages of <500 years even at 6 m sediment depth. In contrast, NGI stations reached ages of approximately 10,000 years at these depths. Sediment age-depth relationships, sulfate reduction rates, and C/N ratios were strongly correlated with differences in microbial community composition between GI and NGI sediments, indicating that age and diagenetic state were key drivers of microbial community assembly in subsurface sediments. Similar bacterial and archaeal communities were present in the surface sedi...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genes
Sulfur
Sulfur Catabolic Process
Chloroflexi <phylum>
Nitrogen
Depth
Gastrointestinal Hemorrhage
Chamerion latifolium
Core
Surface

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.