DOI: 10.1101/486720Dec 7, 2018Paper

Global dynamics of a general vector-borne disease model with two transmission routes

BioRxiv : the Preprint Server for Biology
Sk Shahid NadimJoydev Chattopadhyay


In this paper, we study the dynamics of a vector-borne disease model with two transmission paths: direct transmission through contact and indirect transmission through vector. The direct transmission is considered to be a non-monotone incidence function to describe the psychological effect of some severe diseases among the population when the number of infected hosts is large and/or the disease possesses high case fatality rate. The system has a disease-free equilibrium which is locally asymptomatically stable when the basic reproduction number (R\_0) is less than unity and may have up to four endemic equilibria. Analytical expression representing the epidemic growth rate is obtained for the system. Sensitivity of the two transmission pathways were compared with respect to the epidemic growth rate. We numerically find that the direct transmission coefficient is more sensitive than the indirect transmission coefficient with respect to R\_0 and the epidemic growth rate. Local stability of endemic equilibria is studied. Further, the global asymptotic stability of the endemic equilibrium is proved using Li and Muldowney geometric approach. The explicit condition for which the system undergoes backward bifurcation is obtained. The b...Continue Reading

Related Concepts

Genetic Vectors
Disease Transmission
Retrograde Direction
Disease Model
Protein Expression
Population Group
DSP protein, human

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.