Apr 3, 2020

KMT2D Links TGF-β Signalling to Non-Canonical Activin Pathway and Regulates Pancreatic Cancer Cell Plasticity

BioRxiv : the Preprint Server for Biology
Nicholas R FriedmanJiaqi Shi

Abstract

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-{beta} to the activin A pathway. We found that TGF-{beta} upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D. Loss of KMT2D induces the expression and secretion of activin A, which activates a non-canonical p38 MAPK-mediated pathway to modulate cancer cell plasticity, promote a mesenchymal phenotype, and enhance tumor invasion and metastasis in mice. We observed a decreased KMT2D expression in human primary and metastatic pancreatic cancer. Furthermore, inhibition or knockdown of activin A reversed the pro-tumoral role of KMT2D. These findings reveal a tumor-suppressive role of KMT2D and identify miR-147b and activin A as novel therapeutic targets in pancreatic cancer.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Size
Spatial Distribution
Environment
Sexual Dimorphism
North
Aves
Dimorphic
Species
Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.