Jan 1, 2016

Global Prediction of Chromatin Accessibility Using RNA-seq from Small Number of Cells

BioRxiv : the Preprint Server for Biology
Weiqiang ZhouHongkai Ji

Abstract

Conventional high-throughput technologies for mapping regulatory element activities such as ChIP-seq, DNase-seq and FAIRE-seq cannot analyze samples with small number of cells. The recently developed ATAC-seq allows regulome mapping in small-cell-number samples, but its signal in single cell or samples with ≤500 cells remains discrete or noisy. Compared to these technologies, measuring transcriptome by RNA-seq in single-cell and small-cell-number samples is more mature. Here we show that one can globally predict chromatin accessibility and infer regulome using RNA-seq. Genome-wide chromatin accessibility predicted by RNA-seq from 30 cells is comparable with ATAC-seq from 500 cells. Predictions based on single-cell RNA-seq can more accurately reconstruct bulk chromatin accessibility than using single-cell ATAC-seq by pooling the same number of cells. Integrating ATAC-seq with predictions from RNA-seq increases power of both methods. Thus, transcriptome-based prediction can provide a new tool for decoding gene regulatory programs in small-cell-number samples.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Single-Cell Analysis
Genome-Wide Association Study
Deoxyribonuclease I
Sequence Determinations, RNA
High Throughput Screening
XCL1
Sequence Determinations
Small Lymphocyte
Chromatin Immunoprecipitation
Genes, Regulator

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.