Glu-370 in the Large Subunit Influences the Substrate Binding, Allosteric, and Heat Stability Properties of Potato ADP-glucose Pyrophosphorylase

BioRxiv : the Preprint Server for Biology
Ayse Bengisu SeferogluI Halil Kavakli

Abstract

ADP-glucose pyrophosphorylase (AGPase) is a key allosteric enzyme in plant starch biosynthesis. Plant AGPase is a heterotetrameric enzyme that consists of large (LS) and small subunits (SS), which are encoded by two different genes. In this study, we showed that the conversion of Glu to Gly at position 370 in the LS of AGPase alters the heterotetrameric stability along with the binding properties of substrate and effectors of the enzyme. Kinetic analyses revealed that the affinity of the LSE370GSSWT AGPase for glucose-1-phosphate is 3-fold less than for wild type (WT) AGPase. Additionally, the LSE370GSSWT AGPase requires 3-fold more 3-phosphogyceric acid to be activated. Finally, the LSE370GSSWTAGPase is less heat stable compared with the WT AGPase. Computational analysis of the mutant Gly-370 in the 3D modeled LS AGPase showed that this residue changes charge distribution of the surface and thus affect stability of the LS AGPase and overall heat stability of the heterotetrameric AGPase. In summary, our results show that LSE370 intricately modulate the heat stability and enzymatic activity of the AGPase.

Related Concepts

Acids
Enzyme Stability
Genes
Potato
Starch
glucose-1-phosphate
Glucose-1-phosphate adenylyltransferase
Glutamic Acid
Surface
Structure of Levator Scapulae Muscle

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.