Glucosylhydroxyceramides Modulate Secretion Machinery of a Subset of Plasmodesmata Proteins and a Change in the Callose Accumulation

BioRxiv : the Preprint Server for Biology
A. B. B. IswantoJae-Yean Kim


The plasma membranes encapsulated in the plasmodesmata (PDs) with symplasmic nano-channels contain abundant lipid rafts, which are enriched by sphingolipids and sterols. The attenuation of sterol compositions has demonstrated the role played by lipid raft integrity in the intercellular trafficking of glycosylphosphatidylinositol (GPI)-anchored PD proteins, particularly affecting in the callose enhancement. The presence of callose at PD is tightly attributed to the callose metabolic enzymes, callose synthases (CalSs) and {beta}-1,3-glucanases (BGs) in regulating callose accumulation and callose degradation, respectively. Sphingolipids have been implicated in signaling and membrane protein trafficking, however the underlying processes linking sphingolipid compositions to the control of symplasmic apertures remain unknown. A wide variety of sphingolipids in plants prompts us to investigate which sphingolipid molecules are important in regulating symplasmic apertures. Here, we demonstrate that perturbations of sphingolipid metabolism by introducing several potential sphingolipid (SL) pathway inhibitors and genetically modifying SL contents from two independent SL pathway mutants are able to modulate callose deposition to control sy...Continue Reading

Related Concepts

ESN 196
Anatomical Space Structure
Cell Growth
Linear Regression Body Surface Area Formula for Infants and Children
Espinas protein, Drosophila
Protein Expression

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.