Glycosylation and specific deamidation of ribonuclease B affect the formation of three-dimensional domain-swapped oligomers.
Abstract
RNase A oligomerizes via the three-dimensional domain-swapping mechanism to form a variety of oligomers, including two dimers. One, called the N-dimer, forms by swapping of the N termini of the protein; the other, called the C-dimer, forms by swapping of the C termini. RNase B is identical in protein sequence and conformation to RNase A, but its Asn34 bears an oligosaccharide chain that might affect oligomerization. The ability of RNase B to oligomerize under two sets of conditions has been examined. The amount of oligomers formed via lyophilization was somewhat lower for RNase B than RNase A, and RNase B oligomerized more rapidly in 40% ethanol solution at high temperature than RNase A. The ratio of the N-dimer to C-dimer formed increased with the size of the carbohydrate chain under both sets of conditions. These results suggest that the oligosaccharide chain either favors productive collisions or stabilizes the oligomers, especially the N-dimer. Endoglycosidase H treatment of RNase B partially restored RNase A-like oligomerization. Derivatives of RNase A conjugated at the amine groups to polyethylene glycol chains showed a greatly reduced capacity for oligomerization, suggesting that oligomerization can be impeded sterically...Continue Reading
References
Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A
Citations
Related Concepts
Related Feeds
ASBMB Publications
The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.