DOI: 10.1101/513507Jan 7, 2019Paper

Glycosylphosphatidylinositol Biosynthesis and Remodeling are Required for Neural Crest Cell, Cardiac and Neural Development.

BioRxiv : the Preprint Server for Biology
Marshall LukacsRolf Stottmann

Abstract

The glycosylphosphatidylinositol (GPI) anchor attaches nearly 150 proteins to the cell surface. Patients with pathogenic variants in GPI biosynthetic pathway genes display an array of phenotypes including seizures, developmental delay, dysmorphic facial features and cleft palate. There is virtually no mechanism to explain these phenotypes. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypomorphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2). Pgap2 is one of the final proteins in the GPI biosynthesis pathway and is required for anchor maturation. We found the Clpex mutation results in a global decrease in surface GPI expression. Surprisingly, Pgap2 showed tissue specific expression with enrichment in the affected tissues of the Clpex mutant. We found the phenotype in Clpex mutants is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium, as is observed in the GPI anchored Folate Receptor 1-/- mouse. We showed folinic acid supplementation in utero can rescue the cleft lip phenotype in Clpex. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency in the Wnt1-Cre lineage. These mutants developed median cleft l...Continue Reading

Related Concepts

Cleft Lip
Cleft Palate
Genes
Heart
Leucovorin
Laboratory mice
Glycosylphosphatidylinositols
Cleft Palate With Cleft Lip
Apoptosis
Surface

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Birth Defects

Birth defects encompass structural and functional alterations that occur during embryonic or fetal development and are present since birth. The cause may be genetic, environmental or unknown and can result in physical and/or mental impairment. Here is the latest research on birth defects.