May 27, 2016

Golgb1 regulates protein glycosylation and is crucial for mammalian palate development

Development
Y LanR Jiang

Abstract

Cleft palate is a common major birth defect for which currently known causes account for less than 30% of pathology in humans. In this study, we carried out mutagenesis screening in mice to identify new regulators of palatogenesis. Through genetic linkage mapping and whole-exome sequencing, we identified a loss-of-function mutation in the Golgb1 gene that co-segregated with cleft palate in a new mutant mouse line. Golgb1 is a ubiquitously expressed large coiled-coil protein, also known as giantin, that is localized at the Golgi membrane. Using CRISPR/Cas9-mediated genome editing, we generated and analyzed developmental defects in mice carrying additional Golgb1 loss-of-function mutations, which supported a crucial requirement for Golgb1 in palate development. Through maxillary explant culture assays, we demonstrate that the Golgb1 mutant embryos have intrinsic defects in palatal shelf elevation. Just prior to the developmental stage of palatal shelf elevation in wild-type littermates, Golgb1 mutant embryos exhibit increased cell density, reduced hyaluronan accumulation and impaired protein glycosylation in the palatal mesenchyme. Together, these results demonstrate that, although it is a ubiquitously expressed Golgi-associated ...Continue Reading

  • References64
  • Citations24

Mentioned in this Paper

Embryo
Golgi Membrane
Study
GOLGB1
Immunofluorescence Assay
Structure of Papilla Incisiva of Mouth
Golgi Apparatus
Hypesthesia
Genome
Golgb1 protein, mouse

Related Feeds

CRISPR Genome Editing & Therapy

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

Birth Defects

Birth defects encompass structural and functional alterations that occur during embryonic or fetal development and are present since birth. The cause may be genetic, environmental or unknown and can result in physical and/or mental impairment. Here is the latest research on birth defects.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.