DOI: 10.1101/175729Aug 25, 2017Paper

GPU-accelerated alignment of bisulfite-treated short-read sequences

BioRxiv : the Preprint Server for Biology
Richard WiltonAlexander S Szalay


The alignment of bisulfite-treated DNA sequences (BS-seq reads) to a large genome involves a significant computational burden beyond that required to align non-bisulfite-treated reads. In the analysis of BS-seq data, this can present an important performance bottleneck that can potentially be addressed by appropriate software-engineering and algorithmic improvements. One strategy is to integrate this additional programming logic into the read-alignment implementation in a way that the software becomes amenable to optimizations that lead to both higher speed and greater sensitivity than can be achieved without this integration. We have evaluated this strategy using Arioc, a short-read aligner that uses GPU (general-purpose graphics processing unit) hardware to accelerate computationally-expensive programming logic. We integrated the BS-seq computational logic into both GPU and CPU code throughout the Arioc implementation. We then carried out a read-by-read comparison of Arioc's reported alignments with the alignments reported by the most widely used BS-seq read aligners. With simulated reads, Arioc's accuracy is equal to or better than the other read aligners we evaluated. With human sequencing reads, Arioc's throughput is at le...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.