Groundwater oxygen anomaly related to the 2016 Kumamoto earthquake in Southwest Japan

Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
Yuji SanoDaniele L Pinti

Abstract

Here, we report the groundwater oxygen isotope anomalies caused by the 2016 Kumamoto earthquake (MJMA7.3) that occurred in Southwest Japan on April 16, 2016. One hundred and seventeen groundwater samples were collected from a deep well located 3 km to the southeast of the epicenter in Mifune Town, Kumamoto Prefecture; they were drinking water packed in PET bottles and distributed in the area between April 2015 and March 2018. Further, the oxygen and hydrogen isotopes were evaluated via cavity ring-down spectroscopy without performing any pretreatment. An anomalous increase was observed with respect to the δ18O value (up to 0.51‰) soon after the earthquake along with a precursory increase of 0.38‰ in January 2016 before the earthquake. During these periods, there was no noticeable change in the hydrogen isotopic ratios. Rapid crustal deformation related to the earthquake may have enhanced the microfracturing of the aquifer rocks and the production of new surfaces, inducing δ18O enrichment via oxygen isotopic exchange between rock and porewater without changing δ2H.

References

Jul 7, 1995·Science·C Y KingY Kitagawa
May 26, 1961·Science·H Craig
Oct 12, 2016·Proceedings of the Japan Academy. Series B, Physical and Biological Sciences·Aitaro KatoYohei Hiyama
Sep 17, 2017·Scientific Reports·Marino Domenico BarberioMarco Petitta
Mar 21, 2018·Scientific Reports·Satoki OndaYoshiro Nishio
Jan 23, 2019·Rapid Communications in Mass Spectrometry : RCM·Nak Kyu KimSun Young Park

Methods Mentioned

BETA
ring-down

Related Concepts

Isotopes
Oxygen
Oxygen Isotopes
Spectrum Analysis
Depth
Surface
Evaluation
Rho-Associated Kinases
Microfracture
Southeast

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Torsion Dystonia

Torsion dystonia is a movement disorder characterized by loss of control of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. Here is the latest research.

Archaeal RNA Polymerase

Archaeal RNA polymerases are most similar to eukaryotic RNA polymerase II but require the support of only two archaeal general transcription factors, TBP (TATA-box binding protein) and TFB (archaeal homologue of the eukaryotic general transcription factor TFIIB) to initiate basal transcription. Here is the latest research on archaeal RNA polymerases.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.

Related Papers

Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics
Osamu YasudaMitsuru Ohishi
Hospital Forum
A G Tarics
Lancet
M POPOVIC, D PETROVIC
© 2021 Meta ULC. All rights reserved