Jul 21, 2015

Haplotype-phased synthetic long reads from short-read sequencing

BioRxiv : the Preprint Server for Biology
James A StapletonTimothy A Whitehead

Abstract

Next-generation DNA sequencing has revolutionized the study of biology. However, the short read lengths of the dominant instruments complicate assembly of complex genomes and haplotype phasing of mixtures of similar sequences. Here we demonstrate a method to reconstruct the sequences of individual nucleic acid molecules up to 11.6 kilobases in length from short (150-bp) reads. We show that our method can construct 99.97%-accurate synthetic reads from bacterial, plant, and animal genomic samples, full-length mRNA sequences from human cancer cell lines, and individual HIV env gene variants from a mixture. The preparation of multiple samples can be multiplexed into a single tube, further reducing effort and cost relative to competing approaches. Our approach generates sequencing libraries in three days from less than one microgram of DNA in a single-tube format without custom equipment or specialized expertise.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome
Nucleic Acid Sequencing
HIV Infections
Genomics
Sequencing
Massively-Parallel Sequencing
Tumor Cells, Malignant
Instrument - Device
Sequence Determinations, DNA
Genes, env

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.