Dec 25, 1975

Hemoglobin Deer Lodge (beta 2 His replaced by Arg). Consequences of altering the 2,3-diphosphoglycerate binding site

The Journal of Biological Chemistry
J BonaventuraG Godette


Hemoglobin Deer Lodge is an abnormal human hemoglobin with arginine substituted for histidine at the beta 2 position. X-ray crystallography of normal human hemoglobin has shown that the beta 2 residue is normally part of the binding site for 2,3-diphosphoglycerate. The substitution of arginine for histidine at beta 2 affects both the kinetics and equilibria of ligand binding. When stripped of anions, Hb Deer Lodge has an increased oxygen affinity and a decreased degree of cooperativity relative to Hb A. The alkaline Bohr effect is slightly increased and there are marked increases in oxygen affinity below pH 6 and above pH 8. In the presence of 2,3-diphosphoglycerate the cooperativity in increases to nromal and the pH dependence of oxygen binding is reduced. This contrasts with the enhanced Bohr effect seen for Hb A in the presence of organic phosphates. Due to enhanced anion binding at high pH, Hb Deer Lodge has a slightly lower oxygen affinity than Hb A at pH 9 in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate. Kinetic studies at neutral pH in the absence of organic phosphates revealed biphasicity in the rate of oxygen dissociation from Hb Deer Lodge, while approximately linear time courses were observed for ...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Anion Binding
Positioning Attribute
Ligand Binding
Hemoglobin Variant Test
Hemoglobin Subunit Beta
Deer (mammal)

About this Paper

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.