Mar 8, 2005

Heparanase improves mouse embryo implantation

Fertility and Sterility
Ariel RevelI Vlodavsky


To improve mouse embryonic implantation by recombinant heparanase supplementation. Heparanase, an endoglycosidase-degrading heparan sulfate proteoglycan, may have a role in embryonic implantation because of its enzymatic, angiogenic, and adhesive properties. Increasing endometrial receptivity could improve one of the most difficult pathologies in human fertility. Comparison between mouse blastocysts obtained after 24-hour incubation of morulae with or without heparanase. Experimental laboratory in a medical center. Mice. Morulae were flushed from CB6F1 female mice and incubated for 24 hours at 37 degrees C in M16 medium supplemented with 0.1 mg/mL heparanase (n = 203), with albumin (n = 60), or with medium alone (n = 258). Blastocysts were evaluated by heparanase immunostaining (n = 10), activity assay (n = 283), and transfer to foster mice uterine horns (n = 228). The number of implantation sites was compared. Immunostaining demonstrated that heparanase is constitutively expressed in mouse morulae and blastocyts. Heparanase supplementation resulted in increased staining and enzymatic activity in blastocyts. Implantation rates for the heparanase, M16 medium, and albumin groups, were 36.9%, 17.8%, and 20%, respectively (P<.01). ...Continue Reading

  • References29
  • Citations17


  • References29
  • Citations17


Mentioned in this Paper

Angiogenic Process
Entire Uterus
Hpse protein, rat
Mucin-1 protein
Graft Acceptance
Entire Embryo
Neoplasm of Uncertain or Unknown Behavior of Uterus

Related Feeds

Adhesion Molecules in Health and Disease

Cell adhesion molecules are a subset of cell adhesion proteins located on the cell surface involved in binding with other cells or with the extracellular matrix in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings. Cell adhesion is a crucial component in maintaining tissue structure and function. Discover the latest research on adhesion molecule and their role in health and disease here.