PMID: 41364Jan 1, 1978

Heterogeneity and regulation of glutamate dehydrogenase activity in mammalian brain and liver

Voprosy biokhimii mozga
S G MovsesianN G Ekizian


The present report concerns the study of the catalytic properties and the coenzyme affinity of glutamate dehydrogenase (GDH) and its isoenzymes in various preparations of the brain and liver as well as the different regulatory mechanisms controlling the ratio of the rates of biogenesis and breakdown of glutamate (Glu). The investigations carried out showed that GDH activity of various preparations of brain and liver (crystalline enzymes, cellular extracts and mitochondria) are markedly different from each other by their catalytic and regulatory properties as well as by their coenzyme activity. The data obtained make us conclude that nicotinamide-hypoxanthine-nucleotide (deaminoNAD) is a more effective coenzyme in the oxidative deamination of Glu, than other piridine nucleotides (NAD, NADP, deamino-NADP). It is supposed that in the formation of ammonia and amino acids in brain and especially liver, together with other known mechanisms an important role may be ascribed to the process of transdeamination. In this aspect, as a co-factor of oxidative deamination of Glu deamino-NAD (D-NAD) is thought to be of significant importance.

Related Concepts

Bos indicus
Glutamate Dehydrogenase
Mitochondria, Liver

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.