Aug 29, 2012

Hfq-dependent, co-ordinate control of cyclic diguanylate synthesis and catabolism in the plague pathogen Yersinia pestis

Molecular Microbiology
Lauren E BellowsWyndham W Lathem

Abstract

Yersinia pestis, the cause of the disease plague, forms biofilms to enhance flea-to-mammal transmission. Biofilm formation is dependent on exopolysaccharide synthesis and is controlled by the intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP), but the mechanisms by which Y. pestis regulates c-di-GMP synthesis and turnover are not fully understood. Here we show that the small RNA chaperone Hfq contributes to the regulation of c-di-GMP levels and biofilm formation by modulating the abundance of both the c-di-GMP phosphodiesterase HmsP and the diguanylate cyclase HmsT. To do so, Hfq co-ordinately promotes hmsP mRNA accumulation while simultaneously decreasing the stability of the hmsT transcript. Hfq-dependent regulation of HmsP occurs at the transcriptional level while the regulation of HmsT is post-transcriptional and is localized to the 5' untranslated region/proximal coding sequence of the hmsT transcript. Decoupling HmsP from Hfq-based regulation is sufficient to overcome the effects of Δhfq on c-di-GMP and biofilm formation. We propose that Y. pestis utilizes Hfq to link c-di-GMP levels to environmental conditions and that the disregulation of c-di-GMP turnover in the absence of Hfq may contr...Continue Reading

  • References47
  • Citations29

References

Mentioned in this Paper

Gene Expression Regulation, Bacterial
Bacterial Proteins
Pathogenic Organism
Phosphoric diester hydrolase
Protoplasm
Transcription, Genetic
Second messenger
Catabolic Process
Diguanylate cyclase
5' Untranslated Regions

Related Feeds

Biofilms

Biofilms are adherent bacterial communities embedded in a polymer matrix and can cause persistent human infections that are highly resistant to antibiotics. Discover the latest research on Biofilms here.

Biofilm & Infectious Disease

Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections.Here is the latest research on biofilm and infectious diseases.

Bacterial Respiration

This feed focuses on cellular respiration in bacteria, known as bacterial respiration. Discover the latest research here.