Oct 18, 2019

High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation

Scientific Reports
Chrysanthi TaxiarchiRoberto Galizi

Abstract

Although of high priority for the development of genetic tools to control malaria-transmitting mosquitoes, only a few germline-specific regulatory regions have been characterised to date and the presence of global regulatory mechanisms, such as dosage compensation and meiotic sex chromosome inactivation (MSCI), are mostly assumed from transcriptomic analyses of reproductive tissues or whole gonads. In such studies, samples include a significant portion of somatic tissues inevitably complicating the reconstruction of a defined transcriptional map of gametogenesis. By exploiting recent advances in transgenic technologies and gene editing tools, combined with fluorescence-activated cell sorting and RNA sequencing, we have separated four distinct cell lineages from the Anopheles gambiae male gonads: premeiotic, meiotic (primary and secondary spermatocytes) and postmeiotic. By comparing the overall expression levels of X-linked and autosomal genes across the four populations, we revealed a striking transcriptional repression of the X chromosome coincident with the meiotic phase, classifiable as MSCI, and highlighted genes that may evade silencing. In addition, chromosome-wide median expression ratios of the premeiotic population con...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Meiotic Cell Cycle
Study
MRNA Maturation
Genes
Gene Editing
Sequence Determinations, RNA
Regulatory Sequences, Ribonucleic Acid
Reconstructive Surgical Procedures
Transcription, Genetic
Sex Chromosome Disorders

Related Feeds

CRISPR in Malaria

CRISPR-Cas system enables the editing of genes to create or correct mutations. This technology is being investigated to combat malaria by targeting specific stretches of vector DNA and editing the genome at precise locations. Here is the latest research.