Oct 17, 2018

High stretchability, strength and toughness of living cells enabled by hyperelastic vimentin network

BioRxiv : the Preprint Server for Biology
Jiliang HuMing Guo

Abstract

In many normal and abnormal physiological processes, including cellular migration during normal development and invasion in cancer metastasis, cells are required to withstand severe deformations. The structural integrity of eukaryotic cells under small deformations has been known to depend on the cytoskeleton including actin filaments (F-actin), microtubules and intermediate filaments (IFs). However, it remains unclear how cells resist severe deformations since both F-actin and microtubules fluidize or disassemble under moderate strains. Here, we demonstrate that vimentin intermediate filaments (VIFs), a marker of mesenchymal cells, dominate cytoplasmic mechanics at large deformations. Our results show that cytoskeletal VIFs form a stretchable, hyperelastic network. This network works synergistically with other dissipative cytoplasmic components, substantially enhancing the strength, stretchability, resilience and toughness of the living cytoplasm.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Markers
Stimulators, Caloric, Physical Therapy, Fluidized Medium
Biological Neural Networks
VIM gene
Actins
VIM
F-Actin
Microtubules
Cytoplasmic
Filamentous Actin Location

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Migration in Cancer and Metastasis

Migration of cancer cells into surrounding tissue and the vasculature is an initial step in tumor metastasis. Discover the latest research on cell migration in cancer and metastasis here.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.